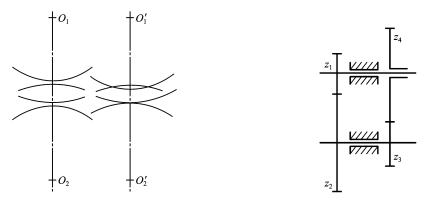

- 7-1 图示为齿条与齿轮啮合,若已知齿条齿廓 K_1 为直线,而且其齿形角 $\alpha=20^\circ$,试用作图法或解析法求出与其共轭的齿轮齿廓 K_2 (设齿轮节圆半径r=100 mm, 齿条全齿高为20 mm)。
 - 7-2 图示渐开线齿廓中,基圆半径 $r_b = 100$ mm, 试求出:
 - 1) 当 $r_{K}=135\,\mathrm{mm}$ 时,渐开线的展角 θ_{K} ,渐开线压力角 α_{K} 和渐开线在K点的曲率半径 ρ_{K} 。
 - 2) 当 $\theta_{K}=20^{\circ}$ 、 25° 和 30° 时,渐开线的压力角 α_{K} 和向径 r_{K} 。
- 7-3 求出渐开线压力角 $\alpha=10^\circ\sim 40^\circ$ 时的渐开线函数(inv $\alpha_K=\theta_K=\tan\alpha_K-\alpha_K$)表,最好打印成表格保存,以备平时查用。
- 7-4 今测得一渐开线直齿标准圆柱齿轮齿顶圆直径 $d_{\rm a}=110$ mm,齿根圆直径 $d_{\rm f}=87.5$ mm,齿数 z=20,试确定该齿轮的模数m,齿顶高系数 $h_{\rm a}^*$ 和顶隙系数 c^* 。
- 7-5 已知一对外啮合渐开线直齿圆柱齿轮,齿数 $z_1=20$, $z_2=41$,模数 m=2 mm, $h_{\rm a}^*=1$, $c^*=0.25$, $\alpha=20^\circ$, 求:
- 1) 当该对齿轮为标准齿轮时,试计算齿轮的分度圆直径 d_1 、 d_2 , 基圆直径 d_{b1} 、 d_{b2} , 齿项圆直径 d_{a1} 、 d_{a2} , 齿根圆直径 d_{f1} 、 d_{f2} , 分度圆上齿距p、齿厚s和齿槽宽e。
- 2) 当该对齿轮为标准齿轮且为正确安装时的中心距a,求出齿轮1的齿顶压力角 α_{a1} ,齿顶处齿廓的曲率半径 ρ_{a1} 。


题图 7-1

题图 7-2

- 7-6 渐开线标准齿轮的基圆和齿根圆重合时的齿数为多少(考虑正常齿和短齿两种情况)?齿数为多少时基圆大于齿根圆?
- 7-7 已知一对外啮合渐开线标准直齿圆柱齿轮,其传动比 $i_{12}=2.4$,模数 $m=5\,\mathrm{mm}$,压力角 $\alpha=20^\circ$, $h_a^*=1$, $c^*=0.25$,中心距 $a=170\,\mathrm{mm}$,试求该对齿轮的齿数 z_1 、 z_2 ,分度圆直径 d_1 、 d_2 ,齿顶圆直径 d_a 、 d_{a2} ,基圆直径 d_b 、 d_{b2} 。
 - 7-8 试指出题7-7的一对齿轮中,哪一个齿轮的基圆齿厚 s_h 大一些? 计算出该对齿轮的

公法线长度和相应的跨齿数。

- 7-9 加工齿数 z = 12 的正常齿制齿轮时,为了不产生根切,其最小变位系数为多少?若选取的变位系数小于或大于此值,会对齿轮的分度圆齿厚和齿顶厚度产生什么影响?
- 7-10 图中给出了两对齿轮的齿顶圆和基圆,试分别在此二图上画出齿轮的啮合线,并标出: 极限啮合点 N_1 、 N_2 , 实际啮合的开始点和终止点 B_1 、 B_2 , 啮合角 α' , 节圆和节点C,并标出二齿轮的转向。
- 7-11 设有一对外啮合直齿圆柱齿轮, $z_1 = 20$, $z_2 = 31$,模数 m = 5 mm,压力角 $\alpha = 20^\circ$,齿顶高系数 $h_a^* = 1$,试计算出其标准中心距a。当实际中心距 a' = 130 mm时,其啮合角 α' 为多少?当取啮合角 $\alpha' = 25^\circ$ 时,试计算出该对齿轮的实际中心距 a'。
- 7-12 对题7-11中的一对齿轮,当给定中心距 $a'=130\,\mathrm{mm}$ 和给定啮合角 $\alpha'=25^\circ$ 的两种情况,试选择合适的变位系数 x_1 、 x_2 以满足这两种传动要求。
- 7-13 在图示的回归轮系中,已知 z_1 =15, z_2 =53, m_{12} = 2 mm; z_3 =21, z_4 =32, m_{34} = 2.5 mm,各齿轮的压力角均为 20°。试问:这两对齿轮能否均用标准齿轮传动?若用变位齿轮传动,可能有几种传动方案?用哪一种方案比较好?
- 7-14 已知一对正常齿制外啮合圆柱齿轮传动, $z_1 = 19$, $z_2 = 100$, m = 2 mm,为了提高传动性能而采用变位齿轮时,若取 $x_1 = 1.0$, $x_2 = -1.6$,该二齿轮的齿顶圆直径、齿根圆直径和分度圆直径各为多少? 试画图看看这三者之间的关系。
- 7-15 已知一对外啮合变位圆柱齿轮, z_1 =15, z_2 =42 ,若取 x_1 =+1.0 , x_2 =-1.0 m = 2mm , h_a^* =1 , c^* = 0.25 , α = 20° ,试计算该对齿轮传动的中心距 a' ,啮合角 α' ,齿顶圆直径 d_{a1} 、 d_{a2} ,齿顶厚 s_{a1} 、 s_{a2} ,并判断该对齿轮能否正常啮合传动,为什么?

题图 7-10

题图 7-13

- 7-16 设有一对平行轴外啮合圆住齿轮传动, z_1 =18, z_2 =35, m = 2 mm,中心距 a =54 mm。若不用变位直齿轮而用斜齿圆柱齿轮来配凑此中心距,其螺旋角 β 应为多少?
- 7-17 设一对斜齿圆柱齿轮, $z_1 = 20$, $z_2 = 41$, m = 4 mm, $\alpha = 20^\circ$,若取其螺旋角 $\beta = 15^\circ$,在求得中心距 α 进行圆整后再最后确定螺旋角 β 值,试计算:

- 1) 该对斜齿轮分度圆及齿顶圆直径。
- 2) 若齿宽 $B=30~\mathrm{mm}$,试计算其端面重合度 ε_{α} 、轴向重合度 ε_{β} 和总重合度 ε_{γ} 。
- 3) 求当量齿数 z_{vl} 、 z_{v2} , 并决定加工时的铣刀号数。
- 7-18 一对交错轴斜齿轮传动,已知轴交错角 Σ = 90° , β_1 = 30° , i_{12} = 2, z_1 = 35 ,法向齿距 p_n = 12.56 mm。试求其中心距a。
- 7-19 已知一蜗杆传动的参数为蜗杆头数 z_1 =1,传动比 i_{12} = 40,蜗轮直径 d_2 = 200 mm,蜗杆的导程角 γ = 5.71°。试确定模数 m,及传动中心距a。
- 7-20 已知一蜗杆传动,测得如下数据:蜗杆头数 z_1 = 2,蜗轮齿数 z_2 = 40,蜗杆轴向齿距 p_x = 15.71 mm,蜗杆顶圆直径 $d_{\rm al}$ = 60 mm。试求出模数 m、蜗轮螺旋角 β_2 、蜗轮分度圆直径 d_2 及中心距a。
- 7-21 已知一对直齿圆锥齿轮的基本参数为 z_1 =15, z_2 =30, m =10 mm, $h_{\rm a}^*$ =1, c^* =0.2, Σ = 90°。 试计算该对圆锥齿轮 的基本尺寸,并判断小齿轮 z_1 是否会产生根切。